WEBB COUNTY DRAINAGE DISTRICT NO. 1

HYDRAULIC AND HYDROLOGIC STUDY (LOMAS DEL SUR & CUATRO VIENTOS SUR)

WCDD BOARDMEMBERS

Ms. Leti Martinez President

MR. AMBROSIO GARZA TREASURER

MS. MARGIE ARCE BOARDMEMBER

SUBMITTED BY:

TABLE OF CONTENTS

1. PURPOSE

Exhibit 1 – Location Map

2. EXISTING CONDITIONS

Exhibit 2 – Existing Creek System Exhibit 3 – Soils Map

3. PROPOSED MASTERPLANS

Exhibit 4 – Lomas Del Sur Drainage Plan (by Sherfey Engineering) Exhibit 5 – Cuatro Vientos Sur Drainage Plan (by Porras-Nance Engineering) Exhibit 6 – Lomas Del Sur Drainage Crossing Design (TxDOT)

4. H&H ANALYSIS

Exhibit 7 – Watershed Map Exhibit 8 – Sherfey Channel Cross Section, Plan, and Profile Exhibit 9 – Porras-Nance Pilot Channel Cross Section Exhibit 10 – Model Outputs - Hydrologic Outputs o Pondpack Master Summary

- Hydraulic Outputs
 - o Hec-Ras
 - o HY-8 Culvert Analysis
 - o Pondpack Pondmaker Worksheet

5. CONCLUSIONS AND RECOMMENDATIONS

1. PURPOSE

The purpose of this report is to analyze stormwater designs for Lomas Del Sur and Cuatro Vientos Sur Subdivisions. The intent of this analysis is to determine if the proposed channel and detention pond for Lomas Del Sur can accommodate the post development flow from Cuatro Vientos Sur Subdivision.

By conveying post flow through Lomas Del Sur drainage system, a detention pond can be eliminated within Cuatro Vientos Sur thus reducing long term maintenance costs for the Webb County Drainage District. Stormwater designs for each subdivision were provided by the respective consultant engineers representing the developer. Refer to Exhibit 1 for Location Map.

This report does not attempt to confirm that the subdivision designs are in compliance to the City of Laredo Land Development Code as it is understood that the developer and its consultant has addressed all requirements.

2. EXISTING CONDITIONS

Cuatro Vientos Subdivision is located upstream from Lomas Del Sur Subdivision. Its watershed is 169.59 acres or 30.5% of the total watershed while Lomas Del Sur watershed totals 386.44 acres or 69.5% of the total. For the purpose of this analysis, the watershed is being identified as A1.

Watershed A1 is comprised of approximately 556 acres and is bound on the north by Cuatro Vientos Norte Subdivision, the west by Ejido Avenue, the south by Pita Mangana Road, and the east by Cuatro Vientos Rd. Small areas of the watershed exceed the bounding roads. The watershed includes developed and undeveloped land both within the Laredo City limits.

There are two (2) tributaries that convey stormwater and converge at an existing pond adjacent to Ejido Avenue. Pond discharges through a natural creek and leaves the property along Ejido along its natural course. The two tributaries are stream order 1 creeks and the creek at the downstream side of the pond is a 2nd order stream. There are currently no effective special flood hazard areas within the watershed being studied. Exhibit 2 illustrates existing creek system.

The overall watershed is composed of two (2) types of soils that contain hydrologic properties that vary from being in groups B-D as depicted in Exhibit 3 Soils Map according to the NRCS Soil Survey of Webb County, Texas. The project site consists of Verick Fine Sandy Loam (VkC) and Copita (CpB). The descriptions of these soils are as follows:

VkC – Verick Fine Sandy Loam (VkC)-This soil is well drained. Surface runoff is medium, and permeability is moderate. Water erosion and soil blowing are moderate hazards if this soil is left bare of vegetation. This soil is poorly suited to most urban and recreation uses. Shallowness to sandstone is the main limitation. This soil is in the Shallow Sandy Loam range site.

CpB – Copita fine sandy loam- This moderately deep, nearly level to gently sloping soil is on summits and side slopes of low hills and on broad, convex plains. Typically, the surface layer is brown fine sandy loam about 9 inches thick. Water erosion and soil blowing are moderate hazards if this soil is left bare of vegetation. This soil is moderately well suited to most urban uses.

3. PROPOSED MASTERPLANS

Proposed Masterplans were provided by the developers for both Lomas Del Sur and Cuatro Vientos Sur Subdivisions. Refer to Exhibits 4 and 5 for Masterplans. Currently, the extension of Lomas Del Sur Blvd. is ongoing with construction of a culvert crossing to be incorporated into this analysis. Through coordination with TxDOT, design plans and criteria were made available to us for integration into the effective models developed and discussed further in Section 4 – H&H Analysis.

The Lomas Del Sur Masterplan proposes various landuses such as commercial, singlefamily residential, multi-family residential, and a future school site. Lomas Del Sur's drainage masterplan indicates one major channel system within a proposed 120' Drainage Easement and one detention pond site of approximately 8.67 acres. Preliminary design plans call for an approximate 2,332 LF of earthen channel beginning from the southern boundary of the proposed development to the proposed pond site with 14' bottom width, 6:1 side slopes, 74' top of channel, 5' depth, and a 20' access road within the easement. The detention pond shown on the provided preliminary plat for Lomas Del Sur displays a pond depth of approximately 17' determined from the contours on said plat. This development's drainage masterplan includes watersheds which do incorporate the neighboring Cuatro Vientos Sur, and are consistant with our watershed area.

The TxDOT designed culvert crossing lying intermediately within the proposed Lomas Del Sur drainage channel consists of three (3) 127 LF runs of 48" diameter reinforced concrete pipe accounting for a 256.10 acre drainage area. According to construction plans for this structure, a 10 year design flow of 270.35 cfs was utilized to design this improvement.

Porras-Nance Engineering provided their drainage masterplan for Cuatro Vientos Sur consisting of a short pilot channel and detention pond site roughly 3.58 acres in size. The masterplan indicates proposed landuses include commercial, single-family residential, multi-family residential and a future school site. As stated in the purpose, it is the intent of this analysis to remove the need for detention for this subdivision. The proposed channel design provided is comprised of an 8' wide, 1' deep pilot channel, 14' gross bottom width, 3:1 side slopes, 40' top width, and 4.33' foot depth within a 70' wide drainage easement.

The contributing watersheds as per the masterplan accrue to an approximate 168.81 acres in which sub-watershed A1-A of this analysis is comparable at 169.59 acres.

4. H&H ANALYSIS

A feasibility study for the two cooperating developments described in the previous section consisting of a H&H Analysis was prepared by integrating these proposed developments to determine if individual detention ponds can be replaced with a regional pond.

Exhibit 6 provides watershed delineations used to estimate time of concentration. The SCS Curve Method was utilized to develop design flows. Pre-development and post-development flows take into consideration hydrologic soil types, current and future landuse, proposed drainage designs provided by respective engineering consultants, antecedent moisture conditions, and existing storm drainage structures.

As per the future masterplans provided, channels were analyzed for adequate capacity in conveyance of post development flow. Post and predevelopment flows are indicated for 10-year, 25-year, and 50-year return events. Flows determined within this analysis for Watershed A1 are as follows:

Comparing Watershed A1, totaling 556 acres, flows for the 25-year event (1696.79 cfs) to Sherfey's calculations (1833 cfs for 552 acres) indicates some variance in our approach which can be attributed to our integration of antecedent moisture conditions in determining SCS Curve Numbers and the delineation of various smaller sub-watersheds by Sherfey Engineering. For the purpose of this analysis, a design flow of 1765 cfs for a 25-year event is being utilized.

Sub-watershed A1-A is comprised of Cuatro Vientos Sur's contributing watershed. Porras-Nance Engineering's contributing watershed measures 168.81 acres in comparison to this study sub-watershed A1-A delineated at 169.59 acres. The design flow for the proposed pilot channel for Cuatro Vientos Sur is 520 cfs, while the 25-year post development flow determined for A1-A is 517.52 cfs. This comparison of watershed areas indicate the same area however reviewing Porras-Nance, Sherfey, and our study, the following design flows for a 25-year post development flow are compared:

Porras-Nance	Sherfey	Crane
806 cfs	630 cfs	518 cfs

Porras-Nance utilizes the rational method for computing this runoff and also provides a separate design flow of 520 cfs for their pilot channel design (Exhibit 7). Sherfey and Crane utilize the SCS curve method with Sherfey's flow higher due to smaller watersheds in their analysis. Based on this information, a design flow of 600 cfs is being utilized for this analysis.

H&H Run Results (Exhibit 8)

HEC-RAS, HY-8, and Pondpack were utilized to model the estimated flows for Cuatro Vientos Sur and Lomas Del Sur. Models were developed utilizing plans received from Lomas consultants on 10/20/14 and 10/17/14, Cuatro Vientos consultants on 10/10/14, and TxDOT. The following observations are made based on these designs as follows:

- A1: The first run of channel from Cuatro Vientos Sur Lomas Del Sur common line up to 500 ft south of the recently constructed Lomas Del Sur drainage crossing is able to accommodate the estimated flow of both developments. The only drawback is the velocity in this channel segment exceeds 5 ft/sec. This will require improvements to combat the high velocity.
- A2: The channel overtops its banks as flow approaches the drainage crossing at Lomas Del Sur which is undersized and creates a backwater effect that causes this overtopping effect. Flow also overtops Lomas Del Sur Boulevard which is currently under construction. Review of construction plans indicate drainage crossing design is base on a 10 year pre development flow.
- A3: The channel downstream of Lomas Del Sur crossing to proposed detention pond accommodates the flow released by the drainage crossing but velocities along channel exceed 5 ft/sec.
- B1: The second run of the channel design which provides drop structures produces similar results as the first run. Higher velocities are reduced and are confined to the drop structure section. Runoff overtops Lomas Del Sur Boulevard and velocities within the channel downstream of the Lomas crossing exceed 5 ft/sec.
- C1: The maximum flow that the drainage crossing at Lomas Del Sur Boulevard can support and still provide a one (1') freeboard to the top of headwall is 400 cfs.
- D1: The Lomas Del Sur pond provides adequate storage (81.33 ac/ft) of post development runoff for both developments maintaining adherence to City ordinance releasing less than predevelopment flow for each storm event.

Return Event	Predevelopment Runoff	Computed Outflow	Freeboard
50 year	1,140.58 cfs	851.31 cfs	2.72 ft
25 year	883.28 cfs	766.78 cfs	4.61 ft
10 year	618.24 cfs	620.49 cfs	7.4 ft

5. CONCLUSIONS & RECOMMENDATIONS

The overall plan developed by Lomas Del Sur consultants is adequate to support Cuatro Vientos Sur post development flow as well as Lomas Del Sur post flow. This plan fails at the Lomas Del Sur Boulevard drainage crossing recently constructed under a joint project by TxDOT and City of Laredo.

As a result, the elimination of a detention pond at Cuatro Vientos Sur is not feasible. It is recommended that Cuatro Vientos construct a detention pond within its development and reevaluate its outlet design flow as the Lomas Del Sur drainage crossing has a maximum estimated capacity of 400 cfs.

Lomas Del Sur must also reevaluate its stormwater masterplan to address the flow restrictions at Lomas Del Sur Boulevard. This limitation will not allow the downstream pond to effectively serve the development and might require Lomas developers to develop an additional detention pond upstream of the Lomas Del Sur Boulevard drainage crossing.

Another option would be for the Cuatro Vientos Sur development to add additional pipes at the Lomas Del Sur crossing to increase flow under the road in order to eliminate need for detention pond. This would be subject to Lomas Del Sur willingness to accept Cuatro Vientos Sur post flow.

1 inch equals 750 feet

VkC

СрВ

新新統務在 第二章

CpB

* 1.54

VkC

VkC

VKC

VKC

W

VkC

111

VKC

AND AND THE ADDRESS OF THE ADDRESS O

VkC

VkC

LOMAS DEL SUR MASTERPLAN

CUATROVIENTOS SUR (CVS)

VKC

LOS PRESIDENTES EXISTING DEVELOPMENT

VkC

SHEET <u>2</u> OF <u>2</u>

N

DEVELOPED CONDITIONS Date: 2/20/2006

MASTER DRAINAGE PLAN LOMAS DEL SUR

BASE MAP IS TAKEN FROM UNITED STATES DEPARTMENT OF INTEROR, GEOLOGICAL SURVEY, LAREDO SOUTH QUADRAVIGE, DATED 1979. 7.5 MINUTE SERIES (TOPOGRAPHIC)

Infooloof NRO: WH-TRS WK USED AS AND AN TO COMPUTE THE AVERAGE CURKE MANNERS AND THE OF CONCENTRATION FOR EACH WHETSHED, PONDPACK VERSON 9.0 MWS USED TO MAN/ZED THE UNITER WHETSHED SKY SSK WEITAND. FOR REACH RADINS, MODFED PULS WAS USED AS A HOROLOOF ROUTING ALCORITIM.

•	_	*	*	_	_	_	_	_	_	•		
Pre-develop	N5-OUT	№4 - B	N4-A	N3-A	N2-A	N2-OUT2	N2-OUT1	N1-OUT	∧1-B	№1 - A	Point of Analysis	PC
ed conditio	658	57	47	529	113	156	110	518	424	382	10 yr	0 INIC
ns	764	79	65	635	142	196	138	662	541	490	Develop Return Pe 25 yr	F ANAL
	850	101	81	732	169	231	163	795	651	590	conditions rlod (CFS) 50 yr	SISL
	943	127	102	847	200	263	193	958	784	713	100 yr	

471.00 8.6	466.00 7.3	460.00 5.9	455.50 5.0	Elevation An (ft) (ac	
7 25.52 8	5 21.22 1 5 23.48 3	3 19.07 2	5 15.70 1	ea A1+A2+sqr(A1" res) (acres)	PROPOSED
3.50 103.84	4 14 64 01 1 31 95 33	1.34 24.43 5.43 49.86	0.00 000 3.08 13.08	A2) Volume Volum (ac-ft) (ac-ft)	POND AND OUT
Barrel Slo	Horiz Len Barrel Len	Upstream	No. barrel Barrel Hei Barrel Wic	e Sum Structure	LET STRUCTURES
pe	ngth	Invert	₽ ₽ ₽ ₽ ₽ ₽	Type	

*7		WATERSHED 5	WATERSHED 4						WATERSHED 3				WATERSHED 2				WATERSHED 1					
lote: A po	Ш. Т	W5	* * W4 W4		W2	W2	W3	W3	W3	W3	W3		W2		, ç	, V	V	V	, V	Sul		
ortion of th	Off1	SB1 SB2	SB1 SB2 SB3		-SB2	SB1 B	SB5	-SB4	-SB3	SB2	SB1		-SB3		FSITE	1-SB4	1-SB3	1-SB2	1-SB1	o-Basin		
nese areas	.35	0.49 0.37	0.60 0.61 0.31		0.32	0.53	0.56	0.62	0.48	0.42	0.46	-	0.39	-	1.15	0.29	0.19	0.26	1.10	70		Dev
were analy	75 Total Area	80 78 Total Area	60 59 76 Total Area	Total Area	75	76	3 8 8	84	77	77	90	otal Area:	77	otal Area:	66	80	93	83	71	CN		eloped
zed as pre-	13.50 1 28	56.03 39.04 95.07	36.24 46.45 54.69 137.38	a 317 . 79	18.46	46.41	10.75	39.15	29.27	11.0	96.71	39.15	39.15	410.46	46.74	35.78	28.73	30.05	296.16	Area		Conditi
developed	38	156 116	47 165		54	113	28	107	76	30	334		110		54	122	133	99	382	10 yr		suoi
condition	48	193 144	65 79 207		67	240 142	35	130	95	38	398		138		72	151	158	121	490	25 yr	Return Pe	
	57	225 170	81 101 245		80	200 169	2000 41	151	113	45	456		163		88	177	179	140	590	50 yr	rlod (CFS)	
	68	265 201	102 127 291		96	200	227 48	176	134	53	524		193		108	208	206	164	713	100 yr		

СрВ √кС J. EGEND PROPOSED FLOW EXISTING FLOW WATERSHED DELINEATION PROPOSED FLOW ON STREETS 50 FT CONTOURS

COPITA B (hydrological soil type) VERICK C (hydrological soil type)

PROJ. NO. 8036.0.

D.A.	с	I ₁₀	A (ac.)	Q ₁₀ (cfs)	Proposed Use	D.A.	с	I ₁₀	A (ac.)	Q ₁₀ (cfs)
А	0.35	4.01	73.92	103.75	Commercial	А	0.95	5.81	11.81	65.19
в	0.35	4.73	86.48	143.17	Residential/Commercial/Institutional	в	0.70	5.90	157.00	648.41
с	0.35	6.79	11.83	28.11	Residential	с	0.52	6.42	5.80	19.36
D	0.35	5.17	13.92	25.19	Residential / Commercial	D	0.81	5.72	15.64	72.46
Е	0.35	5.03	14.54	25.60	Residential / Commercial	Е	0.66	4.97	14.32	46.97
F	0.35	5.12	3.27	5.86	Institutional	F	N/A	N/A	N/A	N/A

D.A.	с	I ₂₅	A (ac.)	Q ₂₅ (cfs)	Proposed Use	D.A.	с	I ₅₀	A (ac.)	Q ₅₀ (cfs)
А	0.95	6.57	11.81	73.71	Commercial	A	0.95	7.29	11.81	81.79
в	0.70	6.67	157.00	733.03	Residential/Commercial/Institutional	в	0.70	7.41	157.00	814.36
с	0.52	7.24	5.80	21.84	Residential	с	0.52	8.03	5.80	24.22
D	0.81	6.47	15.64	81.96	Residential / Commercial	D	0.81	7.18	15.64	90.96
E	0.66	5.64	14.32	53.30	Residential / Commercial	E	0.66	6.27	14.32	59.26

	HYDR	OLOGIC C	ALCULA	TIONS			
OUTFALL LOCATION (STA.)	DRAINAGE AREA ID	DRA INAGE AREA (ACRES)	T (HR)	RAINFALL DEPTH (IN) (10 YR)	Q, CFS (10YR)	RAINFALL DEPTH (IN) (100YR)	Q, CFS (100 YR)
LOMAS DE	L SUR						
107+35.31	A2	256.10	0,95	6,50	270.35	10.0	612.17

- A 10 YEAR DESIGN CRITERIA WAS USED FOR THIS FACILITY.

DRAINAGE AREA

HYDROLOGY: NRCS RUNOF WinTR-55 TYPE III D	F HYDRO	DGRAPH JTION	PROPOSED STRUCTURE						
TIME OF		SLOPE		CURVE	DRA INAGE AREA				
	HR	FT/FT	COEFF.	CN	AC				
TOTAL	0.949			60	256.10				
T SHEET	0.233	0.0050	0.13						
T SHALLOW	0.655	0.0180	0.05						
T CHANNEL	0.061	0.0045	0.12						

		NOT TO	SCALE								
	TEXAS DEPARTMENT OF TRANSPORTATION © 2013										
		LUMAS I	UEL	30	ĸ						
D	DRAINAGE AREA MAP AND										
H	YDR	OLOGIC (CAL	CUI	LAT	IONS					
						DW: DLC					
FED. RD. DTV. NO.	FED	DERAL PROJECT NO.		SHEET N	UMBER	SHEET HO.					
6	CBI 2	012(590), ETC.	SHE	ET	I OF	1 85					
STATE	STATE DIST. NO.	COUNTY	CONTROL	SECTION	JOB	HIGHWAY NO.					
TEXAS	22	WEBB	0922	33	135, EIC.	VARIOUS					

F		
-	DRAIN DITC	H BRIDGE-HYDRAULIC SUMMARY 10-YR (DESIGN) FLOW
	PROPOSE	
	(cfs) Cr	I Slope H.W. 10 I WI 10 OUTLET TAILWATER
	270.36 0), 12 0.0045 4, 735 3.186 10,04 2.907
	DRAIN DI	TCH BRIDGE-HYDRAULIC SUMMARY 100-YR FLOW
	$\left \begin{array}{c} Q_{100} \\ (cfs) \end{array} \right $	Slope H.W.100 OUTLET TAILWATER
	612.17	0.12 0.0045 6.631 4.267 10.023 3.264
	DRAINAG	E AREA WAS DETERMINED FROM THE USGS QUAD
	MAP FOR	LAREDO, TEXAS. THE WINTR-55 SMALL
	COMPUTI	NG PEAK DISCHARGES. REFERENCES: 1.) WEBB
	COUNTY	SOIL SURVEY 2.) USGS LAREDO, TEX QUAD MAP
L		
	DESIGN S	PEED: 30 MPH
		2,400 (2033)
	RDWY FUN	CT CLS: LOCAL STREET
	NOTES:	
	FOR ADDI	TIONAL INFORMATION
	HYDROLOG	COMAS DEL SUR DRAINAGE AREA MAP AND
		TSATE A SIL
		ž 🛪
	490	RICARDO E. DE LA PARRA
		94043
		CENSED WE
		SSIONAL ENT P.E.
		Cran 1.
		/ 05/24/15
· · · · · · · · · · · · · · · · · · ·		
= 482.96 FT		20 10 0 20 40
	480	
		VERT: 1"=4'
		IN ENGLISH
		B
		© 2013
· · · · · · · · · · · · · · · · · · ·	-	LOMAS DEL SUR
		CULVERT LAYOUT
		STA. 107+35.31

			01A.10/	00.0	T		
					D	N: DLC	DW: DLC
					С	K: RED	CK: RED
1.	FED. RD. DIV. NO.	FED	ERAL PROJECT NO.		SHEET N	UMBER	SHEET NO,
470	9 6	C8I 20)12(590), ETC.	SHE	ET	I OF 1	87-
	STATE	STATE DIST.NO.	COUNTY	CONTROL	SECTION	JOB	HIGHWAY NO.
	TEXAS	22	WEBB	0922	33	135, EIC.	VARIOUS

		Fu Contraction of the second sec	Iunction	Contributing Watershed	
		E SES (Top P	Junction	Contributing watershed	Rates
			J-1	A1-A + A1-B	Q10=639.13
$\left\{ \right\}$					Q25 = 815.02
		1 MM/37 F			Q50 = 978.77
, and	and the state of the state		J-2	A1-A + A1-B+A1-C	Q10=970.99
	and the state of the state				Q25 = 1238.86
		1 - with 1			Q50 = 1487.76
\checkmark			Pond	A1-A + A1-B+A1-C+A1-D	Q10 = 1328.56
					Q25 = 1696.79
	The P Provent	A THE THE AND A THE AND A			Q50 = 2037.69
		THE PERAMANGANA	16 7		State of the second
	Legend		Vil		
l			1 Steel		Je
X	Webb County Drainage District Boundary Line		A	Webh Cour	ntv
	Watershed A1				
	Watershed Contributing to Channel	BELLE TO CONTRACTOR OF THE STATE		Drainage Dis	trict
	Sub-Watershed	自己主要 自动行弹 增快的增压分化 人名		Exhibit # 7	
	A1-A	A State of the second s	U s N	Watershed M	ар 📕
	A1-B	是要还是是是是是			
	A1-C	SALE AND ADDRESS STATES		1310 JUNCTION DRIVE	SUITE B
	A1-D		3.4.9	LAREDO, TEXAS 78041 FIRM REGISTRATION NO. F-3353	956-712-1996
- 6		「「「「「「「「「「」」」」「「「「」」」」「「「」」」」」」「「」」」」」」	1 1 1 1 1 1 1		

OFTICE (956) 724-309 FAX (956) 724-920

AND CALCULATIONS

DETENTION POND

PONDPACK

MASTER SUMMARY

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ³ /s)
Watershed A1	Pre-Development 10 year	10	87.324	12.400	618.24
Watershed A1	Post-Development 10 year	10	157.085	12.300	1,328.56
Watershed A1	Pre-Development 25 year	25	120.373	12.400	883.28
Watershed A1	Post-Development 25 year	25	200.398	12.300	1,696.79
Watershed A1	Pre-Development 50 year	50	152.688	12.400	1,140.58
Watershed A1	Post-Development 50 year	50	240.995	12.300	2,037.69

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ³ /s)
J-3	Pre-Development 10 year	10	87.324	12.400	618.24
J-3	Post-Development 10 year	10	157.085	12.300	1,328.56
J-3	Pre-Development 25 year	25	120.373	12.400	883.28
J-3	Post-Development 25 year	25	200.398	12.300	1,696.79
J-3	Pre-Development 50 year	50	152.688	12.400	1,140.58
J-3	Post-Development 50 year	50	240.995	12.300	2,037.69
O-1	Pre-Development 10 year	10	83.060	12.950	301.48
O-1	Post-Development 10 year	10	151.938	12.750	620.49
O-1	Pre-Development 25 year	25	115.363	12.900	453.77
O-1	Post-Development 25 year	25	201.547	12.750	766.78
O-1	Pre-Development 50 year	50	147.100	12.900	570.70
O-1	Post-Development 50 year	50	241.866	12.800	851.31

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
PO-3 (IN)	Pre-Development 10 year	10	87.282	12.450	617.55	(N/A)	(N/A)
PO-3 (OUT)	Pre-Development 10 year	10	83.060	12.950	301.48	464.86	23.591
PO-3 (IN)	Post- Development 10 year	10	157.029	12.350	1,317.52	(N/A)	(N/A)
PO-3 (OUT)	Post- Development 10 year	10	151.938	12.750	620.49	468.60	47.174
PO-3 (IN)	Pre-Development 25 year	25	120.320	12.450	878.78	(N/A)	(N/A)
PO-3 (OUT)	Pre-Development 25 year	25	115.363	12.900	453.77	466.32	32.413
PO-3 (IN)	Post- Development 25 year	25	207.260	12.250	2,692.91	(N/A)	(N/A)
PO-3 (OUT)	Post- Development 25 year	25	201.547	12.750	766.78	471.39	66.920
PO-3 (IN)	Pre-Development 50 year	50	152.624	12.450	1,132.04	(N/A)	(N/A)
PO-3 (OUT)	Pre-Development 50 year	50	147.100	12.900	570.70	467.81	41.932
PO-3 (IN)	Post- Development 50 year	50	248.141	12.150	2,692.91	(N/A)	(N/A)
PO-3 (OUT)	Post- Development 50 year	50	241.866	12.800	851.31	473.28	81.330

Subsection: Time of Concentration Calculations Label: LDS

Time of Concentration Results

Segment #1: TR-55 Shallow Concentrated Flow					
Hydraulic Length	2,692.00 ft				
Is Paved?	True				
Slope	0.020 ft/ft				
Average Velocity	2.87 ft/s				
Segment Time of Concentration	0.260 hours				

Return Event: Post Development

Segment #2: TR-55 C	hannel Flow			
Flow Area		24.5 ft ²		
Hydraulic Length		495.00 ft		
Manning's n		0.016		
Slope		0.003 ft/ft		
Wetted Perimeter		24.67 ft		
Average Velocity		5.41 ft/s		
Segment Time of Conce	ntration	0.025 hours		
Segment #3: TR-55 C	hannel Flow			
Flow Area		267.0 ft ²		
Hydraulic Length		2,803.00 ft		
Manning's n		0.035		
Slope		0.005 ft/ft		
Wetted Perimeter		90.00 ft		
Average Velocity		5.90 ft/s		
Segment Time of Conce	ntration	0.132 hours		
Segment #4: Length a	and Velocity			
Hydraulic Length		105.00 ft		
Velocity		10.00 ft/s		
Segment Time of Conce	ntration	0.003 hours		
Time of Concentration	(Composite)			
Time of Concentration (Composite)		0.421 hours		
==== User Define	d Length &	Velocity		
Tc =	(Lf / V) / 3600)		
	Tc= Time of c	concentration, hours		
Where:	Lf= Flow lengt	th, feet		
	V= Velocity, ft	t/sec		
	Shallow Co	ncontration Flow		

S TR-55 Shallow Concentration Flow

	Unpaved surface: V = 16.1345 * (Sf**0.5)
Tc =	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Sheet Flow

Tc =	(0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4))
	Tc= Time of concentration, hours
	n= Manning's n
Where:	Lf= Flow length, feet
	P= 2yr, 24hr Rain depth, inches
	Sf= Slope, %

Label: LDS

Time of Concentration Results

Segment #1: TR-55 Shallow Concentrated Flow					
Hydraulic Length	1,872.00 ft				
Is Paved?	True				
Slope	0.020 ft/ft				
Average Velocity	2.87 ft/s				
Segment Time of Concentration	0.181 hours				
Segment #2: Length and Velocity					
Hydraulic Length	105.00 ft				
Velocity	10.00 ft/s				
Segment Time of Concentration	0.003 hours				
Segment #3: TR-55 Channel Flow					
Flow Area	24.5 ft ²				
Hydraulic Length	3,623.00 ft				
Manning's n	0.035				
Slope	0.005 ft/ft				
Wetted Perimeter	24.67 ft				
Average Velocity	2.84 ft/s				
Segment Time of Concentration	0.354 hours				
Time of Concentration (Composite)					
Time of Concentration (Composite)	0.538 hours				
==== User Defined Length & Velocity					

$\begin{array}{ll} {\sf Tc}=& & (Lf \ / \ V) \ / \ 3600 \\ {\sf Tc}= \ {\sf Time} \ of \ concentration, \ hours \\ {\sf Where:} & {\sf Lf}= \ {\sf Flow} \ {\sf length}, \ {\sf feet} \\ {\sf V}= \ {\sf Velocity}, \ {\sf ft/sec} \end{array}$

==== SCS TR-55 Shallow Concentration Flow

Unp	aved	surf	ac	e:		
V =	16.1	345	*	(Sf*	*0.	5)

Tc =

Paved Surface: V = 20.3282 * (Sf**0.5)

(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Sheet Flow

Tc =	(0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4))
	Tc= Time of concentration, hours
	n= Manning's n
Where:	Lf= Flow length, feet
	P= 2yr, 24hr Rain depth, inches
	Sf= Slope, %

Return Event: Pre-Development

Subsection: Runoff CN-Area Label: LDS Return Event: Post Development

Runoff Curve Number Data

Soil/Surface Description	CN	Area	С	UC	Adjusted CN
		(acres)	(%)	(%)	
Impervious Areas - Paved; curbs and storm sewers - Soil B	95.000	9.560	0.0	0.0	95.000
Impervious Areas - Paved; curbs and storm sewers - Soil C	95.000	23.450	0.0	0.0	95.000
Residential Districts - 1 acre - Soil C	70.000	194.840	0.0	0.0	70.000
Residential Districts - 1 acre - Soil B	60.000	75.130	0.0	0.0	60.000
Urban Districts - Commercial & Business - Soil B	87.000	7.250	0.0	0.0	87.000
Urban Districts - Commercial & Business - Soil C	90.000	52.900	0.0	0.0	90.000
Residential Districts - 1/8 acre (town houses) - Soil B	78.000	9.070	0.0	0.0	78.000
Residential Districts - 1/8 acre (town houses) - Soil C	85.000	16.760	0.0	0.0	85.000
Residential- Soil B	60.000	32.770	0.0	0.0	60.000
Residential- Soil C	70.000	96.660	0.0	0.0	70.000
School Site- Soil B	60.000	10.490	0.0	0.0	60.000
School Site - Soil C	70.000	27.150	0.0	0.0	70.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	556.030	(N/A)	(N/A)	72.062

Subsection: Runoff CN-Area Label: LDS

Return Event: Pre Development

Runoff Curve Number Data

Soil/Surface Description	CN	Area	C (%)	UC	Adjusted CN
Open space (Lawns,parks etc.) - Good	E2 000	(dcies)	(70)	(70)	E2 000
condition; grass cover > 75% - Soil B	52.000	400.150	0.0	0.0	52.000
Open space (Lawns,parks etc.) - Good	65.000	155.880	0.0	0.0	65.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	556.030	(N/A)	(N/A)	55.644

Index

LDS (Runoff CN-Area, 25 years)...7, 8

LDS (Time of Concentration Calculations, 25 years)...3, 4, 5, 6

М

Master Network Summary...1, 2

WCDD Mapping(LDS).ppc 10/28/2014

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.54] Page 1 of 1

L

HEC-RAS	Plan: Drop Structures	River: LDS	Reach: 1
---------	-----------------------	------------	----------

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	2332.54	10 yr	489.00	502.00	505.39		505.66	0.003642	4.21	116.20	54.63	0.51
1	2332.54	25 yr	600.00	502.00	505.70		506.01	0.003725	4.48	134.04	58.42	0.52
1	2332.54	50 yr	704.00	502.00	505.96		506.31	0.003802	4.70	149.75	61.56	0.53
1	2219.84	10 yr	489.00	501.66	504.05	504.05	504.86	0.015742	7.21	67.85	42.71	1.01
1	2219.84	25 yr	600.00	501.66	504.32	504.32	505.20	0.015298	7.53	79.64	45.91	1.01
1	2219.84	50 yr	704.00	501.66	504.54	504.54	505.49	0.014956	7.80	90.31	48.62	1.01
1	1899.03	10 yr	489.00	492.04	495.47		495.73	0.003455	4.13	118.48	55.13	0.50
1	1899.03	25 yr	600.00	492.04	495.78		496.08	0.003547	4.40	136.50	58.92	0.51
1	1899.03	50 yr	704.00	492.04	496.05		496.38	0.003617	4.62	152.54	62.10	0.52
1	1769.84	10 yr	489.00	491.65	494.04	494.04	494.85	0.015743	7.21	67.85	42.71	1.01
1	1769.84	25 yr	600.00	491.65	494.31	494.31	495.19	0.015300	7.53	79.64	45.91	1.01
1	1769.84	50 yr	704.00	491.65	494.53	494.53	495.48	0.014953	7.79	90.32	48.62	1.01
1	1619.84	10 yr	489.00	487.15	490.74	489.54	490.97	0.002830	3.83	127.55	57.07	0.45
1	1619.84	25 yr	600.00	487.15	491.07	489.81	491.33	0.002910	4.09	146.87	61.00	0.46
1	1619.84	50 yr	704.00	487.15	491.34	490.03	491.63	0.002976	4.29	163.98	64.28	0.47
1	1405.03	10 yr	489.00	486.51	488.90	488.90	489.71	0.015742	7.21	67.85	42.71	1.01
1	1405.03	25 yr	600.00	486.51	489.17	489.17	490.05	0.015315	7.54	79.61	45.90	1.01
1	1405.03	50 yr	704.00	486.51	489.40	489.40	490.34	0.014919	7.79	90.40	48.64	1.01
1	1219.84	10 yr	489.00	480.95	487.26		487.30	0.000202	1.54	316.95	74.00	0.13
1	1219.84	25 yr	600.00	480.95	487.77		487.81	0.000213	1.69	354.49	74.00	0.14
1	1219.84	50 yr	704.00	480.95	488.18		488.23	0.000225	1.83	385.13	74.00	0.14
1	902.43	10 yr	722.00	480.00	487.17		487.22	0.000247	1.90	380.38	74.00	0.15
1	902.43	25 yr	898.00	480.00	487.66		487.73	0.000286	2.16	416.60	74.00	0.16
1	902.43	50 yr	1062.00	480.00	488.05		488.14	0.000323	2.38	445.97	74.00	0.17

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	750	10 yr	722.00	478.80	487.15	481.72	487.19	0.000128	1.54	468.21	74.00	0.11
1	750	25 yr	898.00	478.80	487.64	482.07	487.69	0.000157	1.78	504.25	74.00	0.12
1	750	50 yr	1062.00	478.80	488.04	482.36	488.10	0.000185	1.99	533.43	74.00	0.13
1	683.16		Culvert									
1	619	10 yr	722.00	477.84	482.18		482.45	0.002665	4.15	174.05	66.13	0.45
1	619	25 yr	898.00	477.84	482.70		482.98	0.002496	4.28	209.72	72.31	0.44
1	619	50 yr	1062.00	477.84	483.12		483.42	0.002306	4.42	240.43	74.00	0.43
1	604	10 yr	1054.00	477.63	481.18	481.18	482.28	0.013859	8.43	125.08	56.55	1.00
1	604	25 yr	1322.00	477.63	481.57	481.57	482.80	0.013715	8.90	148.49	61.32	1.01
1	604	50 yr	1571.00	477.63	481.93	481.93	483.24	0.013160	9.17	171.36	65.64	1.00
1	550	10 yr	1054.00	476.86	480.40	480.40	481.51	0.013880	8.43	125.01	56.54	1.00
1	550	25 yr	1322.00	476.86	480.80	480.80	482.03	0.013704	8.90	148.53	61.33	1.01
1	550	50 yr	1571.00	476.86	481.16	481.16	482.47	0.013173	9.17	171.30	65.63	1.00
1	0	10 yr	1054.00	469.00	472.54	472.54	473.65	0.013910	8.44	124.91	56.51	1.00
1	0	25 yr	1322.00	469.00	472.94	472.94	474.17	0.013734	8.91	148.41	61.30	1.01
1	0	50 yr	1571.00	469.00	473.30	473.30	474.61	0.013193	9.18	171.21	65.61	1.00

HEC-RAS Plan: Drop Structures River: LDS Reach: 1 (Continued)

HY – 8 CULVERT ANALYSIS

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow ⊤ype	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
TxDOT 10 yr Pre	280.00	280.00	483.69	4.875	0.238	5-S2n	2.425	2.925	2.497	1.218	11.328
Max with Freeboard	400.00	400.00	485.92	7.103	6.292	5-S2n	3.207	3.445	3.219	1.497	12.337
LDS/CVS 25 _yr Post_	898.00	515.55	488.90	10.079	8.799	7-M2c	4.000	3.735	3.735	2.372	14.075

 Table 2 - Culvert Summary Table: Lomas Del Sur Crossing

Water Surface Profile Plot for Culvert: Lomas Del Sur Crossing

Site Data - Lomas Del Sur Crossing

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 478.82 ft Outlet Station: 127.00 ft Outlet Elevation: 477.84 ft Number of Barrels: 3

Culvert Data Summary - Lomas Del Sur Crossing

Barrel Shape: Circular Barrel Diameter: 4.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: NONE

PONDPACK

PONDMAKER Worksheet Report

Element Details			
ID	104		
Label	Worksheet	(PO-3) - 1	
Select Pond to Design	PO-3		
Flow Allowed Below Target	25.0		
Flow Allowed Above Target	0.0		
Flow Allowed Below Target	30.0		
Flow Allowed Above Target	0.0		
Volume Allowed Below Target	25.0		
Volume Allowed Above Target	50.0		
Tolerance Display	Display PAS	SS for values within specified tolerance	
Notes			
Volume			
Pond Type	Elevation- Area	Use Void Space?	False
E	levation-Area		
Pond Elevation (ft)		Pond Area (acres)	
	460.50	5.020	
	463.00	5.450	
	465.00	5.900	
	469.00	6.830	
	471.00	7.320	
	475.00	8.350	
	476.00	8.670	
Infiltration			
Infiltration Method	No Infiltration		
Output			
Detention Time	Compute All Methods		
Initial Conditions			
Is Outflow Averaging On?	False	Define Starting Water Surface Elevation	Pond Invert

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

WCDD Mapping(LDS).ppc 10/29/2014

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.54] Page 2 of 4

Design Scenario I			Design Return Event	Target Pea Outflow (ft³/s)	ak T V V	Farget Outflow Yolume Gac-ft)	Peak Pond Inflow (ft³/s)	Total Inflow Volume (ac-ft)			
Post-Developm Post-Developm Post-Developm	ent 50 year ent 25 year ent 10 year		50 25 10	1,140. 883. 618.	.58 .28 .24	152.688 120.373 87.324	2,692.9 2,692.9 1,317.5	1248.1411207.26052157.029			
Estimated Storage (ac-ft)	Estimated Max Water Surface Elevation (ft)	Estimated Freeboard Depth	Design Outlet Structure			stimated ak Outflow (ft³/s)	Estimated Peak Outflo vs. Targe	d bw t			
87.471	474.00	Pass	Composi Structure	te Outlet e - 1 to Outlet		881.59	Pass				
77.403	472.71	Pass	Structure	e - 1		826.76	Pass				
58.549	470.23	Pass	Composi	te Outlet e - 1		709.29	Fail				
		Po	ondMaker	Outlet Des	sian						
477.50											
€ ^{475.00}											
472.50							2				
ຍ ສູ່ 470.00 -											
ະມັກ 467.50 - ເມັນ											
₩ 465.00 - Puo											
ط 462.50											
460.00 -	L <u></u>										
0	0.00	200.00	400.00	600. Flow (ft ³	00 /s)	800.00	1,000).00			
			Charlos	1	Tarcati	otine Com	av.o				
	Post-	Development	:10 year	- 1 -	Post-De	velopmer	nt 25 year				
	Post-Development 50 year										

PondMaker Worksheet (Outlet Design)

WCDD Mapping(LDS).ppc 10/29/2014

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.54] Page 3 of 4

D	esign Scenario		Design Return Event	Target Peal Outflow (ft ³ /s)	c Com Peak ((ft	puted Outflow : ³ /s)	Computed Peak Outflo vs. Targe	d ow t	Target Outflow Volume (ac-ft)
Post-Developn Post-Developn Post-Developn	nent 50 year nent 25 year nent 10 year		50 25 10	1,140.5 883.2 618.2	8 8 4	851.31 766.78 620.49	Pass Pass Fail		152.688 120.373 87.324
Computed Volume Outflow (ac-ft)	Computed Outflow Volume vs. Target	Routing O Structu	utlet re	Computer Max Wate Elevation (ft)	d Fre er D	eboard Pepth	Maximur Storage (ac-ft)	m e	
241.866	Fail	Composite Out Structure - 1	let	473.	28 Pass		81.3	330	
201.547	Fail	Structure - 1	let	471.	39 Pass		66.9	920	
151.938	Fail	Composite Out Structure - 1	let	468.	60 Pass		47.:	174	
		Pon	dMaker F	Routing Des	ign				
477.50									
윤 ^{475.00}									0-01 00-00-01 01 00-01-5
472.50									
้ ยั 470.00									
gung 467.50									
afe ≥ 465.00	-								
وم 462.50									
460.00	-L							<u> </u>	
	0.00 2	200.00	400.00	600.0 Flow (ft ³ /s	0	800.00	1,00	0.00	
				1100 (11-73	>)				
	Comp	posite Outlet St Development 1	tructure - 10 year	1 📕 T	arget Ra ost-Dev	ating Cu elopme	rve nt 25 vear		
	Post-	Development 5	50 year		-		,		

PondMaker Worksheet (Routing Design)

WCDD Mapping(LDS).ppc 10/29/2014

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.54] Page 4 of 4