WEBB COUNTY DRAINAGE DISTRICT NO. 1

HYDRAULIC AND HYDROLOGIC STUDY (CUATRO VIENTOS EAST, LOS PRESIDENTES, & GAULT)

WCDD BOARDMEMBERS

Ms. Leti Martinez PRESIDENT

MR. AMBROSIO GARZA TREASURER

MS. MARGIE ARCE BOARDMEMBER

SUBMITTED BY:

WEBB COUNTY DRAINAGE DISTRICT NO. 1

HYDRAULIC AND HYDROLOGIC STUDY (CUATRO VIENTOS EAST, LOS PRESIDENTES, & GAULT)

WCDD BOARDMEMBERS

Ms. Leti Martinez PRESIDENT

MR. AMBROSIO GARZA TREASURER

MS. MARGIE ARCE BOARDMEMBER

NGINEERING

EDWARD D. GARZ WORKS · PLANNING · HYDROLOGY 5

TABLE OF CONTENTS

1. PURPOSE

Exhibit 1 – Location Map

Exhibit 2 – Existing Creek System (including Greenspace Stream Order)

2. EXISTING CONDITIONS

Exhibit 3 – Soils Map

3. H&H ANALYSIS

Exhibit 4 – Watershed Map

Exhibit 5 – Overall Watershed Map

- Exhibit 6 Model Outputs
 - Hydrologic Outputs

o Pondpack Master Summaries

- Hydraulic Outputs
 - o Hec-Ras

o Pondpack Pondmaker Worksheet

- Exhibit 7 Revised Floodplain Map (Existing Conditions)
- Exhibit 8 Stormwater Management Design Criteria
 - Exhibit 8A Channel Design Criteria/ Estimated Storage Requirements
 - Design criteria includes individual development requirements and regional requirements.
 - Exhibit 8B Conduit Design Criteria
 - $_{\odot}\,\text{Alternatives}$ to Open Channel Design
- Exhibit 9 Preliminary Opinion of Costs for Open Channel Design
 - Costs include masterplanned road crossings.

4. CONCLUSIONS AND RECOMMENDATIONS

1. PURPOSE

The purpose of this report is to integrate three (3) individual developments into one (1) regional hydrologic and hydraulic analysis. The intent of this analysis is to determine the current 100 year base flood elevation (BFE) conditions of the existing creek system and ponds within the study area as well as develop regional stormwater management design criteria to culminate at an existing pond located on 15.38 acre tract currently owned by the City of Laredo. This will serve as a basis to establish levels of financial cooperation among the three developments to pursue a regional stormwater solution. Refer to Exhibit #1 for Location Map containing limits of study and Exhibit #2 for Existing Creek System (including Greenspace Stream Order).

By conveying post flow from the developments immediately upstream through Los Presidentes' future drainage system and Gault's future drainage system, a detention pond can be eliminated within Cuatro Vientos East, Los Presidentes as well as one of the masterplanned ponds within Gault thus reducing long term maintenance costs for the Webb County Drainage District. This reduction in detention ponds will increase land area available for residential and/or commercial purposes benefitting both private and governmental entities.

2. EXISTING CONDITIONS

Cuatro Vientos East Subdivision (CVE) is located upstream from Los Presidentes (LP). Its watershed is 420.04 acres or 51.70% of the total watershed while Los Presidentes watershed contains 306.36 acres or 37.80% of the total watershed, and the Summers and Gault properties (SG) watershed totals 85.61 acres or 10.50% of the total watershed. For the purpose of this analysis, the total watershed is being identified as A2. Subwatersheds are identified as CVE, LP, and SG respectively.

Watershed A2 is comprised of approximately 812 acres. Refer to Exhibits #1 "Location Map" and #5 "Overall Watershed Map" for watershed boundaries. Small areas of the watershed encroach onto existing developments including Lago Del Valle to the east, Los Presidentes to the west, as well as Cuatro Vientos Sur to the southwest. The watershed is comprised of primarily undeveloped land within the Laredo City limits.

There are two (2) major creeks and two (2) minor tributuaries that convey stormwater and converge at an existing pond adjacent to Cuatro Vientos Rd labeled "P-5" in Exhibit #1 "Location Map". Pond discharges through a natural creek and leaves the property due west along its natural course towards Merida Drive. The two tributaries are stream order 1 creeks, while the creek flowing south to north adjacent to Cuatro Vientos Rd. is a 2nd order stream. Stream order 1 & 2 creeks recommend 50' vegetative buffer. First and second order streams are voluntary and allow for disturbance of the immediate buffer if the requirements of section 24.57.7 of the City ordinance are met. The creek within the Summers and Gault properties is a 3rd order stream which requires a

mandatory 50' vegetative buffer. There are currently no effective special flood hazard areas within the watershed being studied. Exhibit 2 illustrates existing creek system.

The overall watershed (A2) is composed of three (3) types of soils that contain hydrologic properties that vary from being in groups B-D as depicted in Exhibit 3 Soils Map according to the NRCS Soil Survey of Webb County, Texas. The project site consists of Verick Fine Sandy Loam (VkC), Copita (CpB), and Jimenez-Quemado complex (JQD). The descriptions of these soils are as follows:

VkC – Verick Fine Sandy Loam (VkC)-This soil is well drained. Surface runoff is medium, and permeability is moderate. Water erosion and soil blowing are moderate hazards if this soil is left bare of vegetation. This soil is poorly suited to most urban and recreation uses. Shallowness to sandstone is the main limitation. This soil is in the Shallow Sandy Loam range site.

CpB – Copita fine sandy loam- This moderately deep, nearly level to gently sloping soil is on summits and side slopes of low hills and on broad, convex plains. Typically, the surface layer is brown fine sandy loam about 9 inches thick. Water erosion and soil blowing are moderate hazards if this soil is left bare of vegetation. This soil is moderately well suited to most urban uses.

JQD – Jimenez-Quemado Complex- These shallow to very shallow soils are on the summit and side slopes of hills and ridges. The Jimenez soil is mainly on side slopes of hills and ridges, and the Quemado soil is mainly on the summit of hills and ridges. The areas of these soils are so intricately mixed that mapping them separately was not practical at the scale used in mapping. The Jimenez soil is well drained. Surface runoff is medium, and permeability is moderate. The water erosion hazard is moderate, and the soil blowing hazard is slight if this soil is bare of vegetation. The Quemado soil is well drained. Surface runoff is medium, and permeability is moderate. The hazard of water erosion is moderate, and the hazard of soil blowing is slight if this soil is bare of vegetation. Both soils are an important source of caliche and gravel for use as construction materials. These soils are poorly suited to most urban and recreation uses.

Proposed Masterplans were provided by the developers for all three developments within this study and can be seen overlaid within many of the attached exhibits. Detailed land use information per development can be seen within the SCS Curve Number determination section of Exhibit #6. Land uses varied between single-family residential, multi-family residential, commercial, and park areas. Proposed land uses and preliminary drainage easement locations were incorporated into the H&H analysis further described in the following Section 4.

Also integrated into this analysis is the existing bridge crossing of Cuatro Vientos Rd. adjacent to the existing pond targeted as the regional detention area.

4. H&H ANALYSIS

A feasibility study for the three cooperating developments described in the previous section consisting of a H&H Analysis was prepared by integrating these proposed developments to determine if individual detention ponds can be replaced with a regional pond with adherence of certain design criteria which will be described further. Refer to Exhibits 8A "Channel Design Criteria/Estimated Storage Requirements" and 8B "Conduit Design Criteria".

Exhibit 4 provides watershed delineations used to estimate time of concentration. The SCS Curve Method was utilized to develop design flows. Pre-development and post-development flows take into consideration hydrologic soil types, current and future land use, proposed drainage designs provided by respective engineering consultants, antecedent moisture conditions, and existing storm drainage structures.

As per the future masterplans provided, channels were analyzed for adequate capacity in conveyance of multiple pre and post development flow scenarios (See Exhibits 8A and 8B). Post and predevelopment flows are indicated for the 25-year, 50-year, and 100-year return events. Flows determined within this analysis for Watershed A2's Subwatersheds are as follows:

H&H Run Results (Exhibit 6):

HEC-RAS, HY-8, and Pondpack were utilized to model the estimated flows for Cuatro Vientos East, Los Presidentes, and Gault. Models were developed utilizing masterplans received from Cuatro Vientos East consultants, Los Presidentes consultants, Gault property owners, previous studies commissioned by WCDD within the study area and plans from TxDOT. The following observations are made based on the available data as follows:

A1: The peak pre development outflow of Watershed A2 consisting of the three developments is estimated at 1,640 cfs for the 100 year event. The peak post development outflow is 3,159 cfs. The estimated storage requirement for this regional detention area is 117 ac-ft. Refer to Exhibit 6 for model output. Based on the existing contours gathered from the City of Laredo's 2013 database and assuming the pond is utilized entirely for detention, it is feasible to integrate Cuatro Vientos East, Los Presidentes and Gault into a regional stormwater management plan to be detained at this proposed location. Further detailed surveying will be required to determine the maximum available storage at the site. The existing pond does not encompass the entire City owned 15.38 acre tract available, therefore necessary enhancements can be made to achieve the required storage within the proposed regional pond.

A2: The following represents the individual storage requirements per development should each construct their own individual pond:

CVE	LP	SG
(ac-ft)	(ac-ft)	(ac-ft)
44.17	38.26	25.00

Note: Cuatro Vientos East storage requirement is based on the 50-year event. Los Presidentes and Gault storages are based on the 100-yr event due to their location within the 100-yr floodplain.

Existing Conditions Floodplain Analysis:

B1: This study includes an existing conditions floodplain analysis. Exhibit #7 "Revised Floodplain Map (Existing Conditions) indicates the current floodplain zoning, current Base Flood Elevations (BFEs) in previously studied areas submitted to FEMA, the revised floodplain inundation map for Reach 1, and Base Flood Elevations for Reaches 1 and 2. The average width of the revised floodplain for Reach 1 is 276.94ft with Base Flood Elevations ranging from 432.39ft to 545.11ft. For Reach 2, the average width of the floodplain is 548.6ft with Base Flood Elevations ranging from 434.17ft to 443.64ft. One area that offers an effective level of comparison between effective BFEs and BFEs determined within this study is within Reach 2 between STA:12+65.56 with a BFE of 440.54 and STA:9+45.55 with a BFE of 439. The effective BFE determined at a cross-section lying between the two aforementioned stations is 439. Supporting HEC-RAS output can be found within Exhibit #6.

Stormwater Management Design Criteria:

- C1: Preliminary open channel designs were developed for various scenarios assuming channel design slopes equal to existing natural contours. Exhibit 8A displays various scenarios, flows, and preliminary design parameters for the purpose of comparison of typical flows consisting of upstream pre developments flows and post development flows for the respective development to flows for the respective development accepting post development flow from upstream development.
- C2: For the channel section conveying stormwater through Los Presidentes within the effective 100-yr floodplain A zone, the preliminary channel design would consist of a 8ft deep channel with a 25ft bottom width, 3ft top width and 3 to 1 lateral slopes for a capacity of 2,005 cfs. In order to convey Cuatro Vientos East post flow, this channel would have to be increased in depth by 1 ft, bottom width by 11ft and top width by 17ft still within the drainage easement shown on the masterplan for increased capacity of 3,229 cfs.

- C3: For the channel section conveying stormwater through Gault property which is partially within an effective 100-yr floodplain A zone and AE Zone, the preliminary channel design would consist of a 8ft deep channel with a 25ft bottom width, 81ft top width and 3.5 to 1 lateral slopes for a capacity of 1,647 cfs. In order to convey Cuatro Vientos East post flow and Los Presidentes post flow, this channel would have to be increased in depth by 1.5ft, bottom width by 18.5ft, increased top width by 19.5ft, and for an increased capacity of 3,160 cfs.
- C4: Pipe alternatives were developed for conveying stormwater through Los Presidentes within the effective 100-yr floodplain A zone. The preliminary design would consist of a five (5) 60" diameter pipes and one (1) 66" diameter pipe for a capacity of 2,043 cfs. In order to convey Cuatro Vientos East post flow, this design would require upgrading to two (2) 72" diameter pipes and two (2) 72" diameter providing capacity of 3,291 cfs. Flow rate capacity determined under the assumption of slopes following natural contours and pipe material is Contech SmoothCor or approved equal.
- C5: The pipe alternative for conveying stormwater through Gault property which is partially within an effective 100-yr floodplain A zone and AE Zone consists of a five (5) 66" diameter pipes and one (1) 42" diameter pipe for a capacity of 1,706 cfs. In order to convey Cuatro Vientos East post flow, this design would require upgrading the system to consisting of seven (7) 72" diameter pipes and one (1) 66" diameter pipe providing capacity of 3,165 cfs. Flow rate capacity determined under the assumption of slopes following natural contours and pipe material is Contech SmoothCor.
- C6: A preliminary opinion of construction costs was developed to further conclude the feasibility of a regional stormwater management plan. See Exhibit #9. The cost difference between the scenarios described in observations C2 and C3 is approximately \$301,905. The cost difference between the scenarios described in observations C4 and C5 is approximately \$73,148. These costs should be adjusted for engineering, surveying and geotechnical services.

5. CONCLUSIONS & RECOMMENDATIONS

Developing an overall plan for regional detention integrating Cuatro Vientos East, Los Presidentes, and Gault stormwater management is feasible. This design criteria set forth in this study indicates there is value and benefits for all stakeholders. Land previously required for detention can be utilized more beneficially. The existing pond proposed for regional detention does contain adequate storage, although further environmental study is required to determine the ordinary high water mark as to pinpoint the precise amount of storage currently available above the ordinary high water mark. This environmental study is currently underway. The current pond does not encompass the entire 15.38 acre tract which offers room for enhancement of the pond to accommodate the necessary storage requirements of 117ac-ft.

Establishing a cooperative financial breakdown between developers is the next step in reaching a regional solution. A suggested breakdown of contributions to be made percentagewise of construction costs is provided in Exhibit 8A. Percentages were developed through comparison of the pre-development and post-development flows to be accepted by downstream developers.

The existing conditions floodplain analysis indicates that the computed floodplain is smaller than the current floodplain. An existing condition Letter of Map Revision (LOMR) submittal is recommended to update the existing firm map. This will establish the baseline BFEs and model that can be updated to a CLOMR with proposed channel improvements after the environmental study is completed.

In order to implement a regional stormwater management program, the following action is recommended:

- 1) Submit existing condition LOMR to City and FEMA to reduce floodplain inundation within Los Presidentes and Gault properties and define BFEs;
- Utilize Phase I Environmental Study upon completion to determine need for 404 Permit and establish detailed comprehensive stormwater management plan along existing creek with detailed cost estimate including future culvert crossings;
- Complete detailed topographic survey of existing City of Laredo pond on Summers property to develop detailed topo and conditions to prepare schematic and cost estimate on necessary enhancements and cost sharing schedule for a regional detention pond.
- 4) Analyze, in detail, Watersheds A11, A5, and A3 containing a 3rd order stream contributing run-off to the proposed regional pond site. The limits of current study only encompass a small portion of Gault's masterplanned property with the remainder of the property being located within Watershed A11 (See Exhibit #5-Overall Watershed Map).

Implementing the above stated actions will emphasize the District's commitment to reducing long term maintenance cost and assisting land owners to properly plan their stormwater masterplans. Benefits include:

- 1) Enhancing tax base by removing land area from 100 year floodplain and converting into usable property for development based on existing conditions analysis herein. ***Requires Action 1) LOMR Submittal**;
- 2) Encourage platting and development by providing regional stormwater solutions that incorporate Federal, State, and Local requirements throughout the remainder of drainage district jurisdiction. These studies will set the baseline for platting these tracts with the City of Laredo.

		Pre Developmen	t				Post Developmer	nt	
Watershed	Area (Acres)	Composite SCS	Time of Concentration	Flow Rate	Waters hed	Area (Acres)	Composite SCS	Time of Concentration	Flow Rate
CVE	324.01	56	79.80	$\begin{array}{c} Q25=308.58\\ Q50=399.14\\ O100=513.52 \end{array}$	CVE	324.01	66	12.12	Q25=1075.93 Q50=1320.32 Q100=1620.33
LP	402.38	64	27.06	Q25=940.91	LP	402.38	70	18.96	Q100 = 1020.33 Q25=1295.18
				Q50 = 1163.08 Q100 = 1437.03	<				Q50 = 1563.63 Q100 = 1890.24
SG	85.61	67	10.00	Q25=305.72 Q50=372.66 Q100=454.52	SG	85.61	72	10.00	Q25=349.38 Q50=418.39
*Minimum t	ime of concentration used fo	r runoff determin	ation is 10mins.	Q100 - 434.32	*Minimum t	ime of concentration used fo	r runoff determina	ation is 10 mins.	Q100 = 501.98
					E LO P		Deter	ntion Area	
	N			15.38 Acre	Tract	A.	s Per Subdi	vision Masterpla	n
		and the	14 4 - 12	Owned by	City			网络剧组织	E F -
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The second second					Mala
	Trank C	ALCONT OF	Proposed Re	gional 🎆					
1 inch e	quals 900 feet	A State of	Pond Loca		-	P-5	P-4	Commina .	1. 1
	出 相目 不必要		Store and	and the				とは理論を	A Constant
	的語言言語								a the second
		572.64	TRUCT						
		d	A 1		FREEDON				
	Legen		S	G 🔍 🖉	EXISTING				
	Webb County Drainage Distric	t Boundary Line					C.	2	
	Los Presidentes Masterplan (L Cuatro Vientos East Master Pl	P) an (CVE)				No.	J.		
	Masterplan-GAULT				17.97 (White			ANTE AREN AND	A Real Print Print Print
	Cumulative Watershed			Detentio	on Area		行为国	ALL	a and the
	atersheds K		As P	er Subdivis	ion Maste	erplan 🥌	RA A		
	Su ⁶ Watershed-CVE			AND DESCRIPTION		HAR MA			一眼和目
	SubWatershed-LP		16 A B B	在时时间 在	Carles All		TH A	IP	
	15.38 Acre Tract		Darin				HA P		
	Proposed Drainage Easement	As Per Subdivisio	n Masterplan	EXISTING	DEVELOPI	MENT	1019		
	MARCALLE SA	C Cont			terre (de)	24211/1	LOSPRESI	DENTES	
		1 France	TIL	T		BAZNH	MASTER	PLAN	
					XXX		H 123	THAN UN	
N F B	TTO THE STORE	GAR BEIN			14A	HAMA V	UN A	ERR ////	
	A Lon a Cont	F CHINS	一時になる		12202	E INDE	19412	1.978////	
	A Statistic		Detention Are	a actornion			12	7776 V//	
		ASTE			~ 4				CART
	A STREET BY ST		North Contraction		12000				A PROPERTY
H K		arear a statistic	term mark a state	和云白	(f)(f)	M PA	MA	HALL.	and a state while
Juncti	on Contributing Wat	ershed Comb	ined Flow	遊園シ	1111	1 same	4/1//	11918411	1 . A.A.
J-1	CVE (Pre)	Q2:	5=308.58		62114		4444	A2 /////	
		Q50	= 399.14		HI.	CVE	812	ACRES	
J-1	CVE (Post)	Q100	= 1075.93		1114		X////	HAMAN AND	
		Q50	= 1320.32 = 1620.33		MA &	A CARLES	A 7744	1111111	Angela A
J-2	CVE (Pre) + LP (I	Post) Q25	= 1340.57	J-1		CUATRO VIENTOS EAS	ST		
		Q50	=1637.23	VALL.				MALLE:	12022
J-2	CVE (Post) + LP ($\frac{Q100}{Post}$	= 2002.17	12/11	1915	The second second		Here and the	
開始		Q50	=2636.85		\$\$1\$H	008	1200	CONTACH IN THE STATE	
	CVE (Pre)+LP (Pre	(Q100) e)+SG $(O2^4)$	= 3229.16 = 998.79			100 LAAS	M//	ann an the second s	
	(Post)	Q50	= 1267.63		E AN	SCRAPH.	1944		
J-3	CVE (Post)+LP (Po	Q100 st)+SG 025	= 1/03.17 = 2079.42		THE A	ALLANDIA	1819	10 Al Al	
	(Post)	Q50	= 2565.04	1 and	9/17	Sold Dist	MM		Sec. All
Region	nal CVE (Post)+LP (Po	Q100 st)+SG 025	= 3159.17 = 7458.27				9////8	1177 Jan	A. S.
Pon	d $(Post) + A3 (Post)$)+A5 Q50	= 8754.66			Carl Marco	$\mathcal{Q}(A)$	They by the	
and the second	(Post) +A11 (Po	ost) Q100	= 10317.68	Park Ar	rea		Section State		100 75
			As Per	^r Subdivisio	on Masterp	olan a a a a a a a a a a a a a a a a a a	Ser Statutes	A COMPANY	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
	Contraction of the				的推测的			Webb Count	y
E. Anno						ALL ALL PROPERTY AND		Drainage Disti	r1Cl
		6						EXNIBIT #4 Watershed Ma	a
	No. Constant							RANE ENGINEER	ING CORP.
	and and a star	- Marine		A State	A at a star		1310 LARI	JUNCTION DRIVE EDO, TEXAS_78041	SUITE B 956-712-1996
A 2 0 1	CULATION	MENTOO					FIRM	REGISTRATION NO. F-3353	

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return	Hydrograph Volume	Time to Peak	Peak Flow
		Event	(ac-ft)	(hours)	(ft³/s)
		(years)	Г		
LP	Pre-Development 25 year	25	115.558	12.350	940.91
LP	Post-Development 25 year	25	137.751	12.250	1,295.18
LP	Pre-Development 50 year	50	142.285	12.350	1,163.08
LP	Post-Development 50 vear	50	166.560	12.250	1,563.63
LP	Pre-Development 100 vear	100	175.593	12.350	1,437.03
LP	Post-Development 100 year	100	202.057	12.250	1,890.24
CVE	Pre-Development 25 year	25	69.305	12.950	308.58
CVE	Post-Development 25 year	25	99.204	12.150	1,075.93
CVE	Pre-Development 50 year	50	87.966	12.950	399.14
CVE	Post-Development 50 year	50	121.362	12.150	1,320.32
CVE	Pre-Development 100 year	100	111.680	12.950	513.52
CVE	Post-Development 100 year	100	148.862	12.150	1,620.33
SG	Pre-Development 25 year	25	26.999	12.150	305.72
SG	Post-Development 25 year	25	30.942	12.150	349.38
SG	Pre-Development 50 year	50	32.929	12.150	372.66
SG	Post-Development 50 year	50	37.207	12.150	418.39
SG	Pre-Development 100 year	100	40.274	12.150	454.52
SG	Post-Development 100 year	100	44.9	12.150	501.98

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
J-2	Pre-Development 25 year	25	184.141	12.350	1,010.31
J-2	Post-Development 25 year	25	236.197	12.250	2,153.29
J-2	Pre-Development 50 year	50	229.433	12.350	1,269.39
J-2	Post-Development 50 year	50	287.076	12.250	2,636.85
J-2	Pre-Development 100 year	100	286.340	12.350	1,592.78
J-2	Post-Development 100 year	100	349.970	12.250	3,229.16
J-1	Pre-Development 25 year	25	69.305	12.950	308.58
J-1	Post-Development 25 year	25	99.204	12.150	1,075.93
J-1	Pre-Development 50 year	50	87.966	12.950	399.14
J-1	Post-Development 50 year	50	121.362	12.150	1,320.32
J-1	Pre-Development 100 year	100	111.680	12.950	513.52
J-1	Post-Development 100 year	100	148.862	12.150	1,620.33
J-3	Pre-Development 25 year	25	209.737	12.450	1,021.80
J-3	Post-Development 25 year	25	265.6664	12.350	2,079.42
J-3	Pre-Development 50 year	50	260.775	12.450	1,296.22
J-3	Post-Development 50 year	50	322.632	12.350	2,565.04
J-3	Pre-Development 100 year	100	324.815	12.450	1,639.46
J-3	Post-Development 100 year	100	393.023	12.350	3,159.17
0-2	Post-Development 25 year	25	264.863	12.400	2,029.30
0-2	Post-Development 50 year	50	321.737	12.400	2,510.58
0-2	Post-Development 100 year	100	392.020	12.400	3,098.57

Label: CVE

Time of Concentration Results			
Segment #1: TR-55 Shallow Con	centrated Flow		
Hydraulic Length	2,470.00 ft		
Is Paved?	True		
Slope	0.028 ft/ft		
Average Velocity	3.40 ft/s		
Segment Time of Concentration	0.202 hours		

Time of Concentration (Composite)	
Time of Concentration (Composite)	0.202 hours

==== SCS TR-55 Shallow Concentration Flow

	Unpaved surface: V = 16.1345 * (Sf**0.5)
Tc =	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	$V = \frac{1}{2} $

Label: CVE

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	
Hydraulic Length	2,470.00 ft
Manning's n	0.200
Slope	0.028 ft/ft
2 Year 24 Hour Depth	9.8 in
Average Velocity	0.52 ft/s
Segment Time of Concentration	1.330 hours

Time of Concentration (Composite)	
Time of Concentration (Composite)	1.330 hours

Post Development

Pre Development

n

==== SCS Channel Flow

Tc =	R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) /
Where:	(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

Label: LP

Time of Concentration Results

Segment #1: TR-55 Channel Flow	
Flow Area	559.5 ft ²
Hydraulic Length	4,150.00 ft
Manning's n	0.035
Slope	0.010 ft/ft
Wetted Perimeter	345.00 ft
Average Velocity	5.82 ft/s
Segment Time of Concentration	0.198 hours
Segment #2: TR-55 Channel Flow	
Flow Area	559.5 ft ²
Hydraulic Length	45.00 ft
Manning's n	0.035
Slope	0.008 ft/ft
Wetted Perimeter	345.00 ft
Average Velocity	5.09 ft/s
Segment Time of Concentration	0.002 hours
Segment #3: TR-55 Channel Flow	
Flow Area	559.5 ft ²
Hydraulic Length	2,800.00 ft
Manning's n	0.035
Slope	0.013 ft/ft
Wetted Perimeter	345.00 ft
Average Velocity	6.75 ft/s
Segment Time of Concentration	0.115 hours
Time of Concentration (Composite)	
Time of Concentration (Composite)	0.316 hours

Post Development

==== SCS TR-55 Sheet Flow

Tc =	(0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4))
	Tc= Time of concentration, hours
	n= Manning's n
Where:	Lf= Flow length, feet
	P= 2yr, 24hr Rain depth, inches
	Sf= Slope, %

Subsection: Time of Concentration Calculations Label: LP

Time of Concentration Results	
Segment #1: TR-55 Channel Flow	
Flow Area	559.5 ft²
Hydraulic Length	4,150.00 ft
Manning's n	0.050
Slope	0.010 ft/ft
Wetted Perimeter	345.00 ft
Average Velocity	4.07 ft/s
Segment Time of Concentration	0.283 hours
Segment #2: TR-55 Channel Flow	
Flow Area	559.5 ft ²
Hydraulic Length	45.00 ft
Manning's n	0.050
Slope	0.008 ft/ft
Wetted Perimeter	345.00 ft
Average Velocity	3.56 ft/s
Segment Time of Concentration	0.004 hours
Segment #3: TR-55 Channel Flow	
Flow Area	559.5 ft²
Hydraulic Length	2,800.00 ft
Manning's n	0.050
Slope	0.013 ft/ft
Wetted Perimeter	345.00 ft
Average Velocity	4.73 ft/s
Segment Time of Concentration	0.165 hours
Time of Concentration (Composite)	
Time of Concentration (Composite)	0.451 hours

Pre Development

==== SCS TR-55 Sheet Flow

Tc =	(0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4)) Tc= Time of concentration, hours
Where:	n= Manning's n Lf= Flow length, feet
	P= 2yr, 24hr Rain depth, inches Sf= Slope, %

Subsection: Time of Concentration Calculations Label: SG

Time of Concentration Results

Segment #1: TR-55 Shallow Concentrated Flow					
Hydraulic Length	465.00 ft				
Is Paved?	True				
Slope	0.069 ft/ft				
Average Velocity	5.34 ft/s				
Segment Time of Concentration	0.024 hours				

Time of Concentration (Composite)
Time of Concentration

0.167 hours

==== SCS TR-55 Shallow Concentration Flow

	Unpaved surface: V = 16.1345 * (Sf**0.5)
Tc =	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V = Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

Label: SG

(Composite)

Time of Concentration Results						
Segment #1: TR-55 Sheet Flow						
Hydraulic Length	465.00 ft					
Manning's n	0.050					
Slope	0.069 ft/ft					
2 Year 24 Hour Depth	9.8 in					
Average Velocity	1.60 ft/s					
Segment Time of Concentration	0.081 hours					
Time of Concentration (Composite)						
Time of Concentration (Composite)	0.167 hours					

Post Development

Pre Development

==== SCS Channel Flow

Tc =	R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n
Where:	(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

Subsection: Runoff CN-Area

Label: CVE

Runoff Curve Number Data

Soil/Surface Description	CN	Area	С	UC	Adjusted CN
		(acres)	(%)	(%)	
Residential Districts - Soil B	60.000	191.600	0.0	0.0	60.000
Residential Districts - Soil C	70.000	96.000	0.0	0.0	70.000
Urban Districts - Commercial & Business - Soil B	87.000	21.870	0.0	0.0	87.000
Urban Districts - Commercial & Business - Soil C	90.000	14.540	0.0	0.0	90.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	324.010	(N/A)	(N/A)	66.132

Subsection: Runoff CN-Area

Label: CVE

Pre Development

Post Development

Post Development

Runoff Curve Number Data

Soil/Surface Description	CN	Area	С	UC	Adjusted CN
		(acres)	(%)	(%)	
Open Space (Lawns, parks,etc.) -Soil B	52.000	213.470	0.0	0.0	52.000
Open Space (Lawns, parks, etc.) -Soil C	65.000	110.530	0.0	0.0	65.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	324.000	(N/A)	(N/A)	56.435

Label: LP

Runoff Curve Number Data

Soil/Surface Description	CN	Area	С	UC	Adjusted CN
		(acres)	(%)	(%)	
Residential Districts - Soil B	60.000	63.890	0.0	0.0	60.000
Residential Districts - Soil C	70.000	296.890	0.0	0.0	70.000
Urban Districts - Commercial & Business - Soil B	87.000	5.080	0.0	0.0	87.000
Urban Districts - Commercial & Business - Soil C	90.000	36.520	0.0	0.0	90.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	402.380	(N/A)	(N/A)	70.442

Label: LP

Pre Development

Post Development

Runoff Curve Number Data

Soil/Surface Description	CN	Area	С	UC	Adjusted CN
		(acres)	(%)	(%)	
Open space (Lawns,parks etc.) - Soil B	52.000	28.170	0.0	0.0	52.000
Open space (Lawns,parks etc.) - Soil C	65.000	374.210	0.0	0.0	65.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	402.380	(N/A)	(N/A)	64.090

Label: SG

Runoff Curve Number Data

Soil/Surface Description	CN	Area	С	UC	Adjusted CN
		(acres)	(%)	(%)	
Residential Districts - Soil C	70.000	77.100	0.0	0.0	70.000
Urban Districts - Commercial & Business- Soil C	90.000	8.500	0.0	0.0	90.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	85.600	(N/A)	(N/A)	71.986

Label: SG

Pre Development

Runoff Curve Number Data

Soil/Surface Description	CN	Area	С	UC	Adjusted CN
		(acres)	(%)	(%)	
Open Space (Lawns, parks, etc.) - Soil C-	65.000	56.270	0.0	0.0	65.000
Residential Districts - Soil C	70.000	29.340	0.0	0.0	70.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	85.610	(N/A)	(N/A)	66.714

Index

С

CVE (Runoff CN-Area, 25 years)...15, 16

CVE (Time of Concentration Calculations, 25 years)...3, 4, 5, 6

L

LP (Runoff CN-Area, 25 years)...17, 18

LP (Time of Concentration Calculations, 25 years)...7, 8, 9, 10

Μ

Master Network Summary...1, 2

S

SG (Runoff CN-Area, 25 years)...19, 20

SG (Time of Concentration Calculations, 25 years)...11, 12, 13, 14

WCDD-LP-CVE-SG.ppc 6/23/2015 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.54] Page 1 of 1

WCDD- Cuatro Vientos East, Los Presidentes, and Gault H+H Analysis-PondPack Output CVE (Pre) + LP (Post)/CVE (Pre) + LP (Pre) + SG (Post) Runoff Scenario Models

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
J-2	CVE (Pre) + LP (Post) 25 year	25	206.329	12.25	1,340.57
J-2	CVE (Pre) + LP (Post) 50 year	50	253.702	12.25	1,637.23
J-2	CVE (Pre) + LP (Post) 100 year	100	312.796	12.25	2,002.17
J-3	CVE (Pre) + LP (Pre) + SG (Post) 25 year	25	211.306	12.45	1,027.48
J-3	CVE (Pre) + LP (Pre) + SG (Post) 50 year	50	262.485	12.45	1,302.08
]-3	CVE (Pre) + LP (Pre) + SG (Post) 100 year	100	326.673	12.45	1,645.44

Index

М

Master Network Summary...1

WCDD-LP-CVE(PRE)-SG.ppc 6/12/2015 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.54] Page 1 of 1

WCDD- Cuatro Vientos East, Los Presidentes, and Gault H+H - HEC-RAS Model Output-Existing Condition 100-Yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	10647.08	100 yr	513.52	543	545.11	545.11	545.44	0.015507	4.61	111.34	171.52	1.01
1	10460.69	100 yr	513.52	542	542.83	542.73	542.96	0.009957	2.9	177.29	395.14	0.76
1	10081.69	100 yr	513.52	537.19	537.91	537.91	538.19	0.01623	4.21	122.11	224.41	1
1	9483.272	100 yr	513.52	529	530.19		530.24	0.003849	1.94	264.88	528.18	0.48
1	9365.301	100 yr	513.52	529	529.28	529.28	529.43	0.015282	2.63	174.1	546.66	0.87
1	9209.23	100 yr	513.52	529.81	524.38	524.38	524.68	0.015869		116.53	196.28	0
1	8891.685	100 yr	513.52	515	516.57	516.5	516.94	0.011519	4.89	105.01	118.96	0.92
1	8466.334	100 yr	513.52	509	511.13	511.13	511.48	0.01436	4.78	107.51	148.81	0.99
1	7876.374	100 yr	513.52	499	502.22	502.22	502.75	0.012046	5.9	88.2	86.44	0.97
1	7417.19	100 yr	513.52	493	496.18		496.37	0.004578	3.59	143.23	128.81	0.6
1	6605.645	100 yr	1592.78	488	489.81	489.68	490.19	0.009235	4.94	322.54	305.11	0.85
1	6169.58	100 yr	1592.78	482.41	485.8	485.65	486.25	0.008857	5.38	295.93	238.13	0.85
1	5719.856	100 yr	1592.78	479.71	480.83	480.83	481.24	0.014354	5.13	310.53	386.4	1.01
1	5212.156	100 yr	1592.78	470.32	475.17	475.17	475.75	0.007865	8.92	293.44	241.02	0.86
1	4855.791	100 yr	1592.78	466	470.34	470.28	470.93	0.010188	6.21	264.06	205.48	0.92
1	4561.672	100 yr	1592.78	462	468.12	467.94	468.63	0.006077	7.7	318.35	252.41	0.76
1	4176.031	100 yr	1592.78	459	464.73	464.73	465.53	0.010918	8.12	225.35	140.43	0.98
1	3833.299	100 yr	1592.78	455	461.13	461.13	461.76	0.010316	6.52	260.51	217.22	0.93
1	3478.32	100 yr	1592.78	454	458.92		459.32	0.003819	6.43	356.01	227.7	0.64
1	3063.676	100 yr	1592.78	452	456.49	456.49	457.09	0.007968	7.03	280.56	218.71	0.87
1	2567.792	100 yr	1679.03	447	452.38	452.38	452.93	0.006737	7.91	337.75	293.91	0.82
1	2306.258	100 yr	1679.03	443	449.96	449.96	450.57	0.005018	8.36	331.41	235.4	0.72
1	2136.087	100 yr	1679.03	442	448.3	448.3	448.99	0.0041	8.22	326.62	216.95	0.69
1	1871.093	100 yr	1679.03	439	446.22		446.45	0.002203	5.04	450.8	226.1	0.44
1	1758.3	100 yr	1679.03	438	445.9		446.26	0.001286	5.45	452.23	238.32	0.41
1	1352.945	100 yr	1679.03	435	441.51	441.51	442.21	0.011844	6.74	249.1	175.73	1
1	1047.725	100 yr	1679.03	434	436.87		436.97	0.001468	2.5	672.07	443.49	0.36
1	733.9229	100 yr	1679.03	429	435.68	435.68	436.11	0.005856	6.72	429.81	582.36	0.76
1	377.6291	100 yr	1679.03	431.17	434.48	433.69	434.57	0.001602	2.43	690.59	508.05	0.37
1	127.8124	100 yr	1679.03	431.09	432.39	432.36	432.77	0.013006	4.97	338.12	410.13	0.96

WCDD- Cuatro Vientos East, Los Presidentes, and Gault H+H - HEC-RAS Model Output (Chacon Creek Main Channel)-Existing Condition 100-Yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
2	1424.905	100 Year	7440	438.07	443.64	443.64	444.86	0.011715	9.01	859.98	371.5	0.96
2	1265.557	100 Year	7440	435	440.54		441.35	0.009767	8.88	1072.66	524.83	0.89
2	945.5499	100 Year	7440	434	439	438.15	439.41	0.003921	5.13	1481.59	624.96	0.55
2	713.0168	100 Year	7440	433	436.9	436.9	437.81	0.015167	7.81	977.77	558.88	1.02
2	416.0582		Culvert									
2	148.2544	100 Year	7440	430	435.2		435.38	0.001575	3.43	2167.35	743.91	0.35
2	10.83096	100 Year	7440	431	434.17	433.76	434.93	0.007806	7.14	1090	467.52	0.78

PondMaker Worksheet Detailed Report: Worksheet (P-1) - CVE

Element Details			
ID	109		
Label	Worksheet (P-1) - CVE	
Select Pond to Design	P-1		
Flow Allowed Below Target	25.0		
Flow Allowed Above Target	10.0		
Flow Allowed Below Target	25.0		
Flow Allowed Above Target	0.0		
Volume Allowed Below Target	25.0		
Volume Allowed Above Target	50.0		
Tolerance Display	Display PAS	S for values within specified tolerance	
Notes			
Volume			
Pond Type	Elevation-Area	Use Void Space?	False
	Elevation-Area		
Pond Elevation		Pond Area	
(ft)		(acres)	
	0.00	7.542	
	2.50	9.524	
	6.50	10.055	
Infiltration			
Infiltration Method	No Infiltration		
Output			
Detention Time	None		
Initial Conditions			
Is Outflow Averaging On?	False	Define Starting Water Surface Elevation	Pond Invert

PondMaker Worksheet (Outlet Design)

	Design Scenario		Design Return Event	Target Peak Outflow (ft ³ /s)	Target Outflow Volume (ac-ft)	Peak Pond Inflow (ft ³ /s)	Total Inflow Volume (ac-ft)
Post-Developme Estimated Storage (ac-ft)	nt 50 year Estimated Max Water Surface Elevation (ft)	Estimated Freeboard Depth	50 Design Ou	400.00 utlet Structure	27.618 Estimated Peak Outflow (ft³/s)	1,113.79 Estimated Peak Outflow vs. Target	121.045
48.871	5.32 F	ail	Composite (- 1	Outlet Structure	430.84	Pass	

PondMaker Worksheet (Routing Design)

I	Design Scenario	Design Return Event	Target Peak Outflow (ft ³ /s)	Computed Peak Outflow (ft³/s)	Computed Peak Outflow vs. Target	Target Outflow Volume (ac-ft)
Post-Developme	nt 50 year	50	400.00	391.08	Pass	27.618
Computed Volume Outflow (ac-ft)	Computed Outflow Volume vs. Target	Routing Outlet Structure	Computed Max Water Elevation (ft)	Freeboard Depth	Maximum Storage (ac-ft)	
113.171	Fail	Composite Outlet Structure 1	- 4.85	5 Pass	44.170)

WCDD-CVE.ppc 6/16/2015 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.54] Page 1 of 1

PondMaker Worksheet Detailed Report: Worksheet (P-2) - LP

Element Details						
ID	150					
Label	Worksheet	(P-2) - LP				
Select Pond to Design	P-2					
Flow Allowed Below Target	25.0					
Flow Allowed Above Target	10.0					
Flow Allowed Below Target	25.0					
Flow Allowed Above Target	0.0					
Volume Allowed Below Target	25.0					
Volume Allowed Above Target	50.0					
Tolerance Display	Display PASS for values within specified tolerance					
Notes						
Volume						
Pond Type	Elevation- Area	Use Void Space?	False			
Elev	ation-A rea					
Pond Elevation		Pond Area				
(ft)		(acres)				
44	4.50	3.000				
44	6.50	4.500				
45	5.00	5.000				
Infiltration						
Infiltration Method	No					
Output						
Detention Time	None					
Initial Conditions						
Is Outflow Averaging On?	False	Define Starting Water Surface Elevation	Pond Invert			

D	esign Scenario		Design Return Event	Target Peak Outflow (ft³/s)	Target Outflow Volume (ac-ft)	Peak Pond Inflow (ft³/s)	Total Inflow Volume (ac-ft)	
Post-Developm	ent 100 year		100	1,590.00	167.422	1,855.22	314.816	
Post-Developm	ent 50 year		50	1,265.00	164.854	1,508.42	255.570	
Estimated Storage (ac-ft)	Estimated Max Water Surface Elevation (ft)	Estimated Freeboard Depth	Design O	utlet Structure	Estimated Peak Outflow (ft ³/s)	Estimated Peak Outflow vs. Target		
43.209	43.209 454.03 Fail 37.508 452.83 Pass		Composit Structure	Composite Outlet Structure - 1		1,582.61 Pass		
37.508			Composite Outlet Structure - 1		1,392.28			

PondMaker Worksheet (Routing Design)

Design Scenario) Design Return Event	Target Peak Outflow (ft ³ /s)	Computed Peak Outflow (ft ³/s)	Computed Peak Outflow vs. Target	Target Outflow Volume (ac-ft)
Post-Development 100 year	100	1,590.00	1,429.29	Pass	167.422
Post-Development 50 year	50	1,265.00	1,201.66	Pass	164.854
ComputedComputedVolumeOutflowOutflowVolume vs.(ac-ft)Target	Routing Outlet Structure	e Computed Max Water Elevation (ft)	Freeboard Depth	Maximum Storage (ac-ft)	
308.601 Fail	Composite Outlet Structure - 1 Composite Outlet	453.07	7 Pass	38.258	
249.770 Fail	Structure - 1	451.70	0 Pass	31.645	

PondMaker Worksheet Detailed Report: Worksheet (P-3) - SG

Element Details			
ID	154		
Label	Worksheet (P-3) - SG	
Select Pond to Design	P-3		
Flow Allowed Below Target	25.0		
Flow Allowed Above Target	10.0		
Flow Allowed Below Target	25.0		
Flow Allowed Above Target	0.0		
Volume Allowed Below Target	25.0		
Volume Allowed Above Target	50.0		
Tolerance Display	Display PASS	5 for values within specified tolerance	
Notes			
Volume			
Pond Type	Elevation-Area	Use Void Space?	False
	Elevation-Area		
Pond Elevation		Pond Area	
(ft)		(acres)	
	425.00	3.000	
	426.50	4.000	
	432.50	5.000	
Infiltration			
	No Infiltration		
Output			
Detention Time	None		
Initial Conditions			
Is Outflow Averaging On?	False	Define Starting Water Surface Elevation	Pond Invert

WCDD- Cuatro Vientos East, Los Presidentes, and Gault Hydrologic and Hydraulic Analysis

PondMaker Worksheet (Outlet Design)

1	Design Scenario		Design Return Event	Target Peak Outflow (ft ³ /s)	Target Outflow Volume (ac-ft)	Peak Pond Inflow (ft ³ /s)	Total Inflow Volume (ac-ft)
Post-Developme Estimated Storage (ac-ft)	nt 100 year Estimated Max Water Surface Elevation (ft)	Estimated Freeboard Depth	100 Design Ou	1,590.00 utlet Structure	205.388 Estimated Peak Outflow (ft ³ /s)	1,647.31 Estimated Peak Outflow vs. Target	329.270
24.604	430.81 P	ass	Composite (- 1	Outlet Structure	1,463.40	Pass	

PondMaker Worksheet (Routing Design)

I	Design Scenario	Design Return Event	Target Peak Outflow (ft ³ /s)	Computed Peak Outflow (ft ³ /s)	Computed Peak Outflow vs. Target	Target Outflow Volume (ac-ft)
Post-Developme	nt 100 year	100	1,590.00	1,587.19	Pass	205.388
Computed Volume Outflow (ac-ft)	Computed Outflow Volume vs. Target	Routing Outlet Structure	Computed Max Water Elevation (ft)	Freeboard Depth	Maximum Storage (ac-ft)	
321.038	Fail	Composite Outlet Structure	431.03	B Pass	25.010)

WCDD-LP(PRE)-CVE(PRE)-SG(pond).ppc 6/26/2015

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.54] Page 1 of 1

PondMaker Worksheet Detailed Report: Worksheet (P-5) - CVE-LP-SG

Element Details			
ID	154		
Label	Worksheet (P-5) - CVE-LP-SG	
Select Pond to Design	P-5		
Flow Allowed Below Target	25.0		
Flow Allowed Above Target	10.0		
Flow Allowed Below Target	25.0		
Flow Allowed Above Target	0.0		
Volume Allowed Below Target	25.0		
Volume Allowed Above Target	50.0		
Tolerance Display	Display PAS	S for values within specified tolerance	
Notes			
Volume			
Pond Type	Elevation-Area	False	
	Elevation-Area		
Pond Elevation		Pond Area	
(ft)		(acres)	
	425.00	15.000	
	430.00	15.200	
	437.00	15.250	
Infiltration			
Infiltration Method	No Infiltration		
Output			
Detention Time	None		
Initial Conditions			
Is Outflow Averaging On?	False	Define Starting Water Surface Elevation	Pond Invert

PondMaker Worksheet (Outlet Design)

[Design Scenario		Design Return Event	Target Peak Outflow (ft ³ /s)	Target Outflow Volume (ac-ft)	Peak Pond Inflow (ft ³ /s)	Total Inflow Volume (ac-ft)
Post-Developmer Estimated Storage (ac-ft)	nt 100 year Estimated Max Water Surface Elevation (ft)	Estimated Freeboard Depth	100 Design Ou	1,650.00 utlet Structure	205.388 Estimated Peak Outflow (ft ³ /s)	3,097.62 Estimated Peak Outflow vs. Target	392.014
138.741	434.15 P	ass	Composite (- 1	Outlet Structure	1,609.46	Pass	

PondMaker Worksheet (Routing Design)

Ľ	Design Scenario	Design Return Event	Target Peak Outflow (ft ³ /s)	Computed Peak Outflow (ft ³ /s)	Computed Peak Outflow vs. Target	Target Outflow Volume (ac-ft)
Post-Developmen Computed Volume	nt 100 year Computed Outflow	100 Routing Outlet Structure	1,650.00 Computed Max Water	1,590.99 Freeboard Depth	Pass Maximum Storage	205.388
Outflow (ac-ft)	Volume vs. Target		Elevation (ft)		(ac-ft)	
351.834	Fail	Composite Outlet Structure - 1	- 434.10) Pass	137.869)

WCDD-LP-CVE-SG(pond).ppc 6/26/2015

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.54] Page 1 of 1

2_6

P-7

H Ť١

REACH 1- STA:106+47.08

Webb County Drainage District

Exhibit #7 **Revised Floodplain Map** (Existing Conditions)

1310 JUNCTION DRIVE LAREDO, TEXAS 78041 FIRM REGISTRATION NO. F-3353

SUITE B 956-712-1996

WEBB COUNTY DRAINAGE DISTRICT -Cuatro Vientos East, Los Presidentes, Gault HYDROLOGY ANALYSIS-PRE AND POST DEVELOPMENT DESIGN CONSIDERATIONS OPEN CHANNEL OPTIONS

SUBDIVISION WATERSHED	Map Legend Label	Overall Watershed ID	25-yr Pre Development Flow (cfs)	25-yr Post Development Flow (cfs)	50-yr Pre Development Flow (cfs)	50-yr Post Development Flow (cfs)	100-yr Pre Development Flow (cfs)	100-yr Post Development Flow (cfs)	Design Scenario	Design Storm Event	Design Flow (cfs)	Pondpack Junction ID	Pond ID	Channel Flow Capacity (cfs)	Slope (%)	Channel Depth (ft)	Bottom Width (ft)	Top Width (ft)	Lateral Slope (X:1)	Velocity (ft/s)	Avg. Easement Width Currently Masterplanned (ft)	Easement Width Required for Regional Pond (ft)
Cuatro Vientos East (Ultimate Build 324 acres)	CVE	A2	309	NA	399	NA	514	NA	CVE Pre	25-yr	309	J-1	P-1	325	0.98	4.5	8	44	4	2.78	50	45
Cuatro Vientos East (Ultimate Build 324 acres)	CVE	A2	NA	1076	NA	1320	NA	1620	CVE Post	25-yr	1076	J-1	P-1	1090	0.98	7.5	14	59	3	3.98	50	60
Los Presidentes Master plan (Ultimate Build 402 acres)	LP	A2	941	1295	1163	1564	1437	1890	LP Post + CVE Pre	25-yr	1348	J-2	P-2	1354	1.32	7.5	16	61	3	4.69	90	65
Los Presidentes Master plan (Ultimate Build 402 acres)	LP	A2	941	1295	1163	1564	1437	1890	LP Post + CVE Post	25-yr	2153	J-2	P-2	2159	1.32	8.5	23	74	3	5.24	90	75
Los Presidentes Master plan (Ultimate Build 402 acres)	LP	A2	941	1295	1163	1564	1437	1890	LP Post + CVE Pre	100-yr	2002	J-2	P-2	2005	1.32	8	25	73	3	5.11	90	75
Los Presidentes Master plan (Ultimate Build 402 acres)	LP	A2	941	1295	1163	1564	1437	1890	LP Post + CVE Post	100-yr	3229	J-2	P-2	3232	1.32	9	36	90	3	5.70	90	90
Summers/Gault Watershed (85.60 acres)	SG	A2	306	NA	373	NA	455	NA	LP Pre + CVE Pre+ SG Post	100-yr	1645	J-3	P-5	1647	0.78	8	25	81	3.5	3.89	200	85
Summers/Gault Watershed (85.60 acres)	SG	A2	NA	349	NA	418	NA	502	LP Post + CVE Post+ SG Post	100-yr	3159	J-3	P-5	3160	0.78	9.5	43.5	100.5	3	4.62	200	105

	Subdivision(s)	Pond ID	Esti Re	imated Storage equired (ac-ft)	Pond Acreage Shown on Masterplan (acres)	Estimated Pond Depth (ft)	Subdivision Contributing to Regional Pond	Storage Contribution to Regional Pond (%)
FUTURE								
PONDS/POSSIBLE	CVE Post	P-1	*1	44.17	4.45	9.93	CVE	39.90
REGIONAL POND	LP Post+ CVE							
	Pre	P-2	*2	38.26	5.2	7.36	LP	49.51
	SG Post + LP							
	Pre + CVE Pre	P-3	*2	25.00	3.72	6.72	SG	10.54
	LP Post+CVE							
	Post+SG Post	P-5	*2	137.87	15.5	8.89		

Assumptions

design

2) All channels with Lateral Slope of "X" equal to or greater

than 3 are earthen.

3) Slopes follow natural contours.

4) Run-off flows developed with SCS Curve Method

*1- Pond volume based on 50-yr event. *2- Pond volume based on 100-yr event.

	Runoff Cont	Runoff Contribution (%) to Downstream Channel by Developer									
Channel Scenario	Gault	Gault Hilltop Farms Cuatro Vie									
CVE Post + Los Presidentes											
Post (25yr)	N/A	63	37								
CVE Post + Los Presidentes											
Post (100yr)	N/A	62	38								
CVE Post + Los Presidentes Post+ Gault Post (100vr)	52	30	18								

1) Pond outlets are circular pipe runs.*Quick conceptual

WEBB COUNTY DRAINAGE DISTRICT -Cuatro Vientos East, Los Presidentes, Gault HYDROLOGY ANALYSIS-PRE AND POST DEVELOPMENT DESIGN CONSIDERATIONS PIPE OPTIONS

SUBDIVISION WATERSHED	Sub-Watershed Label	Overall Watershed ID	25 -yr Pre Developmen t Flow (cfs)	25 -yr Post Developme nt Flow (cfs)	50 -yr Pre Developme nt Flow (cfs)	50 -yr Post Developme nt Flow (cfs)	100-yr Pre Developme nt Flow (cfs)	100-yr Post Developme nt Flow (cfs)	t Design Scenario	Design Storm Event	Design Flow (cfs	Pond pack Junction ID	Pond ID	Single Run Pipe Diameter (1) Flow Capacity (cfs)	Single Rur Pipe Diameter (2) Flow Capacity (cfs)	Cumulative Cumulative Pipe Flow Capacity (cfs)	Slope (%)	Mann in g's Co efficient (n)	Material Typ e	Pipe Diameter Required (in)	Pipe Diameter (1) Recommended (in)	Pipe Runs	Pipe Diameter (2) Recommend ed (in)	Pipe Runs	Velocity (ft/s)
Cuatro Vientos East (Ultimate Build 324 acres)	CVE	A2	309	NA	399	NA	496	NA	CVE Pre	25-yr	309	J-1	P-2	154	24	333	0.98	0.012	Contech SmoothCor	62.32834	48	2	24	1	10.93
Cuatro Vientos East (Ultimate Build 324 acres)	CVE	A2	NA	1076	NA	1320	NA	547	CVE Post	1 25-yr	1076	J-1	P-2	280	0	1120	0.98	0.012	Contech SmoothCor	99.51321	60	4			13.71
Los Presiden tes Master plan (Ultimate Build 402 acres)	LP	A2	941	1295	1163	1564	1437	1890	LP Post + CVE Pre	25-yr	1348	J-2	P-3	325	51	1351	1.32	0.012	Contech SmoothCor	102.4076	60	4	30	1	16.16
Los Presidentes Master plan (Ultimate Build 402 acres)	LP	A2	941	1295	1163	1564	1437	1890	LP Post + CVE Post	25-yr	2153	J-2	P-3	419	83	2178	1.32	0.012	Contech SmoothCor	122.0647	66	5	36	1	17.11
Los Presidentes Master plan (Ultimate Build 402 acres)	LP	A2	941	1295	1163	1564	1437	1890	LP Post + CVE Pre	100-yr	2002	J-2	P-3	325	419	2043	1.32	0.012	Contech SmoothCor	118.7811	60	5	66	1	16.43
Los Presidentes Master plan (Ultimate Build 402 acres)	LP	A2	941	1295	1163	1564	1437	1890	LP Post + CVE Post	100-yr	3229	J-2	P-3	528	325	3291	1.32	0.012	Contech SmoothCor	142.1016	72	5	60	2	17.88
Summers/Gault Watershed (85.60 acres)	SG	A2	306	NA	373	NA	455	NA	LP Pre + CVE Pre+ SG Post	100-yr	1645	J-3	P-4	322	96	1706	0.78	0.012	Contech SmoothCor	121.7869	66	5	42	1	12.82
Summers/Gault Watersh ed (85.60 acres)	SG	A2	NA	349	NA	418	NA	502	LP Post + CVE Post+ SG Post	100-yr	3159	J-3	P-4	406	322	3165	0.78	0.012	Contech SmoothCor	155.5498	72	7	66	1	14.26

Assumptions

1) Pipe diameters based on average existing natural slope, listed under "Slope (%)" column. 2) Run-off flows developed with SCS Curve Method 3) Velocity determined by design flow traveling through recommended pipe diameter and pipe runs.

Webb County Drainage District Cuatro Vientos East, Los Presidentes, and Gault H + H Analysis Preliminary Opinion of Cost for Channels

I. Channel Improvements (LP Post + CVE Pre) 100-yr Design

item No.	Description	Estimited . Ciganity	Unit		Jiffit Price	Extended
1	Channel Excavation	52,847	CY	\$	4.00	\$ 211,389.63
2	Erosion Control Blanket	248,346	SF	\$	2.00	\$ 496,692.00
3	60" RCP	1,400	LF	\$	200.00	\$ 280,000.00
4	66" RCP	280	LF	\$	225.00	\$ 63,000.00
5	Concrete-Lined Channel	26,838	SF	\$	5.00	\$ 134,190.00
LP Sha	are = 100% CVE Share = 0%	Total	Drainage Chann	el Im	provements	\$ 1,185,271.63

II. Channel Improvements (LP Post + CVE Post) 100-Yr Design

Rem						
	Devict prior	and a second				
1	Channel Excavation	76,440	CY	\$	4.00	\$ 305,760.00
2	Erosion Control Blanket	305,242	SF	\$	2.00	\$ 610,484.40
3	60" RCP	280	LF	\$	200.00	\$ 56,000.00
4	72" RCP	1,400	LF	\$	250.00	\$ 350,000.00
5	Concrete-Lined Channel	32,987	SF	\$	5.00	\$ 164,933.00
LP Sha	are = 80% CVE Share = 20%	Total	Drainage Chann	el Im	provements	\$ 1,487,177.40

III. Channel Improvements (LP Pre + CVE Pre+ SG Post) 100-Yr Design

	Description		Ünk	- Un		Eciencied *
1	Channel Excavation	13,741	CY	\$	4.00	\$ 54,962.96
2	Erosion Control Blanket	72,835	SF	\$	2.00	\$ 145,670.00
3	66" RCP	350	LF	\$	225.00	\$ 78,750.00
4	42" RCP	70	LF	\$	140.00	\$ 9,800.00
SG S	hare = 100%LP Share = 0% CVE Share	= 0% Total	Drainage Cha	nnel Impr	ovements	\$ 289,182.96

IV. Channel Improvements (LP Post + CVE Post+ SG Post) 100-Yr Design

lunn Ko	Description	Cumber -	Unit		It Price	Catenciad
1	Channel Excavation	22,167	CY	\$	4.00	\$ 88,666.67
2	Erosion Control Blanket	90,633	SF	\$	2.00	\$ 181,265.00
3	72" RCP	420	LF	\$	200.00	\$ 84,000.00
4	66" RCP	70	LF	\$	120.00	\$ 8,400.00
SG S	hare = 80% LP Share = 13% CVE Shar	e = 7% Total	Drainage Chan	inel Impr	ovements	\$ 362,331.67

ASSUMPTIONS:

1) Purpose of this estimate is to demonstrate cost differential between Pre + Post Flow scenarios.

- 2) Headwalls not included, as they are a common cost to each estimate.
- 3) Cost Estimate for pond pending. See pond storage distribution percentage in Exhibit #8A.

EDWARD D. GAR 75853

This document is released for the purpose of interim review under the authority of Edward D. Garza P.E. 75853 on June 26, 2015. It is not to be used for bidding purposes.

